When I was asked to make a cutting board as a special gift, I wanted to do something new and eye-catching. Tired of squares and straight lines, I envisioned curving accents—not shallow inlay, but strips extending through the full thickness of the board so they would be visible on the top, bottom, and both ends. I drew some flowing S-curved lines, and one soon overlapped another. I liked the way they looked, but I thought, how am I going to make all the curved pieces nest together perfectly?

When I broke the process down, it was actually quite simple. I make the through-inlays as bent-laminations: Each accent line is made of thin, flexible strips sandwiched together to look like a solid piece of wood. The critical step is getting the solid parts of the cutting board to fit together. After routing a shallow groove in the blank using a curved template, I bandsaw most of the waste from the groove and use a flush-trimming bit to remove the rest from each half. When I add the inlay strips, the curves match exactly.

Although the three lines of through-inlay in my cutting board differ in thickness and appear to have different shapes, I use a single template to do all the routing required to establish their paths. I trim the inlays flush once they are glued in. So far, I’ve only used the technique on cutting boards, but I can also imagine using it on chair backs, box lids, or cabinet doors.

One template guides the routing

I create the through-inlays one at a time—gluing in the first one, then trimming it to length and flushing it off before beginning work on the second. I use different diameter router bits for each inlay, but just the one router template. By flipping the template and moving it laterally, I get different results for each line of inlay.

To design the curves, I sketch freehand right on the cutting-board blank, keeping in mind that I will have to bend the strips to that shape, so the curves can’t get too crazy. And to avoid problems with
Thin strips make sweet curves. Lewis uses sandwiches of \(\frac{1}{8} \)-in.-thick strips to create the S-curved stripes that pass through the entire board.

Sketch a pleasing curve. Lewis begins by sketching an S-curve freehand on the cutting-board blank (far left), keeping it roughly parallel with the grain. He transfers the curve to tracing paper (left), which he tapes to \(\frac{3}{4} \)-in. MDF and bandsaws out to make a template.

Make it smooth. Fairing the template’s curves is vital, since any bumps could be visible in the inlay gluelines. Lewis used the tablesaw to cut slots in a piece of MDF, creating a pliable sanding block that conforms to convex and concave curves.

Clever process creates innovative inlay

BY SCOTT LEWIS

wood movement, I keep the inlay curve roughly parallel with the grain of the cutting board.

When I have a curve I like, I transfer it to a piece of tracing paper cut to the size of the cutting-board blank. Then I tape the paper to a piece of \(\frac{3}{4} \)-in. MDF and bandsaw along the line. So that the router will be supported at the beginning and end of the cut, I make this template several inches longer than the cutting board.

For tight gluelines, the curves of the template must be free of bumps and dips, so I bandsaw carefully and sand with a flexible
1. Rout a Groove

Template-routing a 1⁄4-in.-deep groove creates smooth, accurate reference edges for the next steps. Get to final depth in multiple passes.

2. Saw Out the Center

Before sawing, Lewis darkens the corners of the groove with a pencil for visibility. Then he carefully bandsaws the waste, staying 1⁄16 in. away from each wall of the routed groove.

3. Finish with a Flush Cut

Placing the workpiece groove-side down on his router table, Lewis flush-trims the bandsawn surface with a 1-in.-dia. straight bit, guided by a bottom bearing.
Hold it flat. Cauls with shallow notches center the inlay strips. Lewis uses a deep-reach clamp (left) to adjust end-to-end alignment of the cutting board’s halves.

Verify the alignment. Before putting on the final pipe clamps, Lewis uses a notched piece of MDF (left) to make sure the halves are lined up perfectly.

ADD VARIETY WITH PIN STRIPES

For a jazzy alternative, try adding thin commercial veneers between each of the thicker strips.

Interesting assembly
Having sliced your cutting board apart, you may look at the two halves and think,
A few steps to smooth strips. After cutting the end of the inlay flush with a handsaw, Lewis uses a router (left) to get it close to flush with the surface. Then he uses a card scraper (photo below) for final smoothing.

Repeat for additional strips. With the first strip glued in and flushed off, Lewis starts the process for the second strip. After repositioning the template on the cutting board, he routs a new groove (above), bandsaws away the waste, and flush-trims it on the router table (above right). He clamps the new curve (below right), and when that is all glued up and scraped flush, he repeats the process for the third strip.
Soft edges. After band-sawing and smoothing the cutting board’s curved perimeter, Lewis gives the edges a shallow radiused profile (far right). He uses the top section of a 1-in. roundover bit, taking light passes.

“What have I done?” Not to worry; with the right clamps and clamping cauls, the whole thing will come back together. The glue-up is a bit of challenge, though, since you have to clamp in three directions.

I glue up the cutting board on a flat bench and use shopmade cauls that have notches to accommodate the inlay. I use a quick-grip-style clamp to bring the halves most of the way together, squeezing the stack of inlay strips to the curved shape. I then add pipe clamps with light pressure to close the joint. Next, I tighten clamps on the notched cauls that hold everything flat and push the inlay strips into place. As I tighten the pipe clamps, I check that the ends of the halves line up.

After glue-up, I use a handsaw to cut the inlay to length, then rout it and scrape it flush. Then I start the process over to add the subsequent inlay strips.

When I’ve finished the inlays, I bandsaw the sides of the cutting board to gentle curves and sand them smooth. Then I give the edge a radiused profile and cut finger grips into the ends.

I sand all surfaces with P150 grit, and sand the end grain to P220. Before wrapping this gift and mailing it off, I coat it with my favorite food-safe finish—mineral oil, which never goes rancid and is easy for the owner to maintain.

Scott Lewis works wood in Ennismore, Ont., Canada.