## A Deco Box with Kerf-Bent Corners

How to calculate the kerf depth. Companion content to an entry in the Woodworking Life blog on FineWoodworking.Com.
by Gene Jameson

When wood is bent at a kerf, the result approximates an isosceles triangle. The following formulas are used to calculate the depth of kerf needed.
You can think of an isosceles triangle as two right triangles back-to-back. Then use the Pythagorean equations to solve the triangle.

$$
\begin{array}{r}
a=90^{\circ}-\left(\frac{\left(\frac{\text { Overall Bend Angle }}{\text { Total Number of Kerfs }}\right)}{2}\right) \\
c=\left(\frac{\left(\frac{\text { Kerf Width }}{2}\right)}{\operatorname{Cos}(a)}\right)
\end{array}
$$

So for the project described in my Woodworking Life blog entry:
$\mathrm{a}=83.57^{\circ}$
$\mathrm{c}=0.447 \mathrm{in}$.

Now that we have taken care of the geometry we can calculate the wall thickness of our box. I want to leave $1 / 16$ in. to be bent. Therefore, $0.447 \mathrm{in} .+0.0625 \mathrm{in} . \approx 0.510 \mathrm{in}$. I will go for an exact 0.500 in . thick as this will help me when I rabbet the top edge to make the lip. Because the kerf depth will remain unchanged, reducing the stock thickness to 0.500 in . will leave 0.053 in . of stock to be bent, which will be fine.

